[4]

Q.6 Attempt any two:

- i. Design a combinational logic using PLA which produce 3 different 5 outputs which represent following function.
 F1=∑ (1,4,5,12,14,15)
 F2=∑ (3,5,6,8,10,13)
 F3=∑ (0,2,7,11,14,15)
 ii. Realize the expression 5
 - ii. Realize the expression
 Y1= AB'C+BC'D'+A'CD',
 Y2= BC'D+ABCD+A'C',
 Y3= AD'+BC'D+ACD with MUXs, Decoder, Gates and ROM.
 - iii. What are the different tools for creating a state machine on Chip? 5Explain all in brief.

Total No. of Questions: 6

Total No. of Printed Pages:4

Enrolment No.....

Duration: 3 Hrs.		Maximum Marks: 60
Knowledge is Power	Programme: Diploma	Branch/Specialisation: CS
UNIVERSITY	CS2OE01 Digital Electronics	
E S	End Sem (Odd) Examination Dec-2017	
DI-CAN	Faculty	of Engineering

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

Q.1	i.	The output of a logic gate is 1 when all its inputs are at logic 0. the gate is either		1		
		(a) a NAND o	or an EX-OR	(b) an OR or	an EX-NOR	
		(c) an AND c	or an EX-OR	(d) a NOR or	an EX-NOR	
	ii. DeMorgan's first theorem shows the equivalence of					1
		(a) OR gate a	nd Exclusive (OR gate.		
		(b) NOR gate and Bubbled AND gate.				
		(c) NOR gate	and NAND ga	ate.		
		(d) NAND ga	ate and NOT ga	ate		
	iii.	In a JK Flip-I	Flop, toggle me	eans		1
		(a) Set $Q = 1$	and $Q = 0$.			
		(b) Set $Q = 0$	and $Q = 1$.			
	(c) Change the output to the opposite state.(d) No change in output.					
		(a) Demultipl	exer	(b) Multiplex	er	
		(c) Full subtra	act	(d) Half subt	ract	
	v. How many flip flops are required to construct a decade counter				let a decade counter	1
		(a) 10	(b) 3	(c) 4	(d) 2	
	vi. ASM chart takes entire block as				1	
		(a) 1 unit	(b) 2 unit	(c) 3 unit	(d) 4 unit	
	vii. Which of the following is the fastest logic					1
			(a) TTL	(b) ECL	(c) CMOS	(d) LSI

P.T.O.

	viii.	Table that is not a part of asynchronous analysis procedure is(a) Transition table(b) State table(c) Flow table(d) Excitation table	1			
ix.		Which of the memory is volatile memory				
		(a) ROM (b) RAM (c) PROM (d) EEPROM				
	х.	The access time of ROM using bipolar transistors is about	1			
		(a) 1 sec (b) 1 msec (c) 1 microsec (d) 1 nsec.				
Q.2	i.	Convert The following number in Hexadecimal, Binary and Octal $(56)_{10}$	2			
	ii.	Minimize the following expression using K-Map & realize it with NAND Gates.				
		F=A'B'C'D+A'BC'D+A'B'CD+ABCD'+ABC'D				
	iii.	Design a BCD to Excess-3 Code converter combinational Circuit. 5				
OR	iv.	Design a combination circuit which can compare two bits long digital number.	5			
Q.3	i.	Explain the working of JK flip-flop. What is the Race-Around Condition?	2			
	ii.	Design a 4-bit bidirectional shift register and explain its clock diagram in detail.	8			
OR	iii.	What is Synchronous system? Define the meaning of synchronous state machine. What are the steps of analyzing state machine?	8			
Q.4	i.	Design a self starting counter that generate following 3 bit sequence 000, 010, 001, 100, 110, 101, 111, 011	3			
	ii.	Assuming that data changes on positive clock transition, construct an AST to implement the state diagram of given figure. Use MUX for IFL & Gate for OFL.	7			

- OR iii. Construct a reduced state diagram for a system that checks an input line **7** to find the word 110110. The check begins in synchronism with the start of a word and repeat at 6-bit interval.
- Q.5 i. For a synchronous circuit given in below figure

Draw the fundamental mode model and label the feedback variables and excitation variable. Also draw the excitation table for circuit.

ii.Compare all logic families in tabular form.6ORiii.Explain the interfacing of TTL to CMOS and CMOS to TTL logic.6

P.T.O.

4

CS2OE01 Digital Electronics Marking Scheme

Q.1	i.	The output of a logic gate is 1 when all its inputs are at logic 0. the gate is either	1
		(d) a NOR or an EX-NOR	
	ii.	DeMorgan's first theorem shows the equivalence of	1
		(b) NOR gate and Bubbled AND gate.	
	iii.	In a JK Flip-Flop, toggle means	1
		(c) Change the output to the opposite state.	
	iv.	Two bit subtraction is done by	1
		(d) Half subtract	
	v.	How many flip flops are required to construct a decade counter	1
		(c) 4	
	vi.	ASM chart takes entire block as	1
		(a) 1 unit	
	vii.	Which of the following is the fastest logic	1
		(b) ECL	
	viii.	Table that is not a part of asynchronous analysis procedure is	1
		(d) Excitation table	
	ix.	Which of the memory is volatile memory	1
		(b) RAM	
	х.	The access time of ROM using bipolar transistors is about	1
		(c) 1 microsec	
Q.2	i.	Convert The following number in Hexadecimal, Binary and Octal	2
		(56) ₁₀	
		Hexadecimal: (38) ₁₆ ,	
		Binary: (111000) ₂ and	
		Octal: (70) ₈	
	ii.	Minimize the following expression using K-Map & realize it with	3
		NAND Gates.	
		F=A'B'C'D+A'BC'D+A'B'CD+ABCD'+ABC'D	
		F = A'B'D + BC'D + ABCD' - 2 marks	
		Realization with NAND – 1 mark	

	iii.	Design a BCD to Excess-3 Code converter combinational Circuit.	5
		BCD to EX-3 Code – 3 marks	
		K-map Solution – 1 mark	
		Convertor Diagram – 1 mark	
OR	iv.	Design a combination circuit which can compare two bits long digital	5
		number.	
		Comparator Table – 1 mark	
		Comparator Equation – 3 marks	
		Circuit Diagram – 1 mark	
Q.3	i.	Explain the working of JK flip-flop. What is the Race-Around	2
		Condition?	
		JK flip-flop and Race-Around Condition – 2 marks	
	ii.	Design a 4-bit bidirectional shift register and explain its clock diagram	8
		in detail.	
		Register and its types – 5 marks	
		Bidirectional shift register – 3 marks	
OR	iii.	What is Synchronous system? Define the meaning of synchronous state machine. What are the steps of analyzing state machine?	8
		Synchronous system – 2 marks	
		Synchronous state machine – 3 marks	
		Steps of analyzing state machine – 3 marks	
Q.4	i.	Design a self starting counter that generate following 3 bit sequence	3
		000, 010, 001, 100, 110, 101, 111, 011	
		Converter table and state diagram – 1 mark	
		K-map for input – 1 mark	
		Black diagram – 1 mark	
	ii.	Assuming that data changes on positive clock transition, construct an	7
		AST to implement the state diagram of given figure. Use MUX for IFL & Gate for OFL.	

- OR iii. Construct a reduced state diagram for a system that checks an input line 7 to find the word 110110. The check begins in synchronism with the start of a word and repeat at 6-bit interval.
 State diagram 3 marks
 State table 2 marks
 System diagram 2 marks
- Q.5 i. For a synchronous circuit given in below figure

4

Draw the fundamental mode model and label the feedback variables and excitation variable. Also draw the excitation table for circuit. **Fundamental mode model – 2 marks Excitation table for circuit – 2 marks**

	ii.	Compare all logic families in tabular form. Compare logic families – 3 marks	6				
		Table at least five parameters – 3 marks					
OR	iii.	Explain the interfacing of TTL to CMOS and CMOS to TTL logic.	6				
		Interfacing – 2 marks					
		TTL to CMOS – 2 marks					
		CMOS to TTL – 2 marks					
Q.6		Attempt any two:					
	i.	Design a combinational logic using PLA which produce 3 different outputs which represent following function.	5				
		$F1 = \sum (1,4,5,12,14,15)$					
		$F2 = \sum (3,5,6,8,10,13)$					
		$F3 = \sum (0,2,7,11,14,15)$					
		PLA with F1, F2 and F3 – 5 marks					
	ii.	Realize the expression	5				
		Y1 = AB'C + BC'D' + A'CD',					
		Y2=BC'D+ABCD+A'C',					
		Y3= AD'+BC'D+ACD with MUXs, Decoder, Gates and ROM.					
		Realize expression Y1, Y2 and Y3 – 1 mark					
		MUX – 1 mark					
		Decoder – 1 mark					
		Gates – 1 mark					
		ROM – 1 mark					
	iii.	What are the different tools for creating a state machine on Chip?	5				
		Explain all in brief.					
		Tools for creating a state machine – 3 marks					
		VHDL, Verilog – 2 marks					
